Jupyter Notebook Binder

Integrate scRNA-seq datasets#

scRNA-seq data integration is the process of analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.

Here, weโ€™ll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.

Setup#

!lamin load test-scrna
Hide code cell output
๐Ÿ’ก found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
๐Ÿ’ก loaded instance: testuser1/test-scrna

import lamindb as ln
import lnschema_bionty as lb
import anndata as ad
๐Ÿ’ก loaded instance: testuser1/test-scrna (lamindb 0.54.1)
ln.track()
๐Ÿ’ก notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2
โ— record with similar name exist! did you mean to load it?
id __ratio__
name
scRNA-seq Nv48yAceNSh8z8 90.0
๐Ÿ’ก Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-09-23 14:26:21, created_by_id='DzTjkKse')
๐Ÿ’ก Run(id='3G25N0qTAGM59cj14r0P', run_at=2023-09-23 14:26:21, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')

Access #

Query files by provenance metadata#

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser1).search("scrna")
id __ratio__
name
Integrate scRNA-seq datasets agayZTonayqAz8 90.0
scRNA-seq Nv48yAceNSh8z8 90.0
transform = ln.Transform.filter(id="Nv48yAceNSh8z8").one()
ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
FDK3jmLIce6yJxf3AvQg IQa93Jma None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Q9lZFzkAEdlreiEYStVQ None 2023-09-23 14:25:43 DzTjkKse
m5hBpJeHPjTykUs8Heqo IQa93Jma None .h5ad AnnData 10x reference pbmc68k None 660792 GU-hbSJqGkENOxVKFLmvbA md5 Nv48yAceNSh8z8 Q9lZFzkAEdlreiEYStVQ None 2023-09-23 14:26:15 DzTjkKse

Query files based on biological metadata#

assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
cell_types = lb.CellType.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,
    species=species.human,
    cell_types=cell_types.gamma_delta_t_cell,
)
query.df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
FDK3jmLIce6yJxf3AvQg IQa93Jma None .h5ad AnnData Conde22 None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 Q9lZFzkAEdlreiEYStVQ None 2023-09-23 14:25:43 DzTjkKse

Transform #

Compare gene sets#

Get file objects:

query = ln.File.filter()
file1, file2 = query.list()
file1.describe()
File(id='FDK3jmLIce6yJxf3AvQg', suffix='.h5ad', accessor='AnnData', description='Conde22', size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', updated_at=2023-09-23 14:25:43)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='IQa93Jma', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-23 14:24:53, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-23 14:26:15, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='Q9lZFzkAEdlreiEYStVQ', run_at=2023-09-23 14:24:56, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-23 14:24:53)
Features:
  var: FeatureSet(id='ed8mcrFrPEZzWNADNXCw', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-09-23 14:25:39, modality_id='2WeGOzvB', created_by_id='DzTjkKse')
    'MYO15B', 'PTGDR', 'TMPRSS12', 'LGALS14', 'C19orf85', 'None', 'HSPA5', 'None', 'NAALADL1', 'None', ...
  obs: FeatureSet(id='J5z5sAuNRoTvzXKH8pcp', n=4, registry='core.Feature', hash='pDY8QlMbUS6woChIgypn', updated_at=2023-09-23 14:25:43, modality_id='iaVlbrVX', created_by_id='DzTjkKse')
    ๐Ÿ”— tissue (17, bionty.Tissue): 'duodenum', 'lamina propria', 'skeletal muscle tissue', 'liver', 'spleen', 'jejunal epithelium', 'blood', 'omentum', 'thymus', 'ileum', ...
    ๐Ÿ”— assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v1', '10x 5' v2', '10x 3' v3'
    ๐Ÿ”— cell_type (32, bionty.CellType): 'conventional dendritic cell', 'progenitor cell', 'T follicular helper cell', 'mast cell', 'classical monocyte', 'group 3 innate lymphoid cell', 'non-classical monocyte', 'macrophage', 'gamma-delta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', ...
    ๐Ÿ”— donor (12, core.ULabel): '637C', 'A36', 'A31', 'A35', 'D496', 'D503', '621B', '582C', 'A37', 'A29', ...
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ tissues (17, bionty.Tissue): 'duodenum', 'lamina propria', 'skeletal muscle tissue', 'liver', 'spleen', 'jejunal epithelium', 'blood', 'omentum', 'thymus', 'ileum', ...
  ๐Ÿท๏ธ cell_types (32, bionty.CellType): 'conventional dendritic cell', 'progenitor cell', 'T follicular helper cell', 'mast cell', 'classical monocyte', 'group 3 innate lymphoid cell', 'non-classical monocyte', 'macrophage', 'gamma-delta T cell', 'effector memory CD8-positive, alpha-beta T cell, terminally differentiated', ...
  ๐Ÿท๏ธ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 5' v1', '10x 5' v2', '10x 3' v3'
  ๐Ÿท๏ธ ulabels (12, core.ULabel): '637C', 'A36', 'A31', 'A35', 'D496', 'D503', '621B', '582C', 'A37', 'A29', ...
file1.view_flow()
https://d33wubrfki0l68.cloudfront.net/557ea12fcb6635883e904e3dcd4b2954a2f8560f/6fab2/_images/6541eef21b46d1c726f694acaac94a8aa5505b354213e26d5fe787e357f9f38f.svg
file2.describe()
File(id='m5hBpJeHPjTykUs8Heqo', suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', size=660792, hash='GU-hbSJqGkENOxVKFLmvbA', hash_type='md5', updated_at=2023-09-23 14:26:15)

Provenance:
  ๐Ÿ—ƒ๏ธ storage: Storage(id='IQa93Jma', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-09-23 14:24:53, created_by_id='DzTjkKse')
  ๐Ÿ“” transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type='notebook', updated_at=2023-09-23 14:26:15, created_by_id='DzTjkKse')
  ๐Ÿ‘ฃ run: Run(id='Q9lZFzkAEdlreiEYStVQ', run_at=2023-09-23 14:24:56, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
  ๐Ÿ‘ค created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-23 14:24:53)
Features:
  var: FeatureSet(id='qS4yp3yr4WNzhcmIpiAS', n=754, type='number', registry='bionty.Gene', hash='WMDxN7253SdzGwmznV5d', updated_at=2023-09-23 14:26:15, modality_id='2WeGOzvB', created_by_id='DzTjkKse')
    'EMC7', 'HNRNPR', 'REEP5', 'FKBP11', 'PPIA', 'TAPBP', 'ICAM4', 'ISG20', 'IL18', 'TINF2', ...
  obs: FeatureSet(id='9zkZusuUgsFH2hmrW2EX', n=1, registry='core.Feature', hash='nliLqWFgeik4Ty1kNqRH', updated_at=2023-09-23 14:26:15, modality_id='iaVlbrVX', created_by_id='DzTjkKse')
    ๐Ÿ”— cell_type (9, bionty.CellType): 'CD16-positive, CD56-dim natural killer cell, human', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'B cell, CD19-positive', 'CD8-positive, alpha-beta memory T cell', 'central memory CD8-positive, alpha-beta T cell', 'monocyte', 'mature T cell', 'dendritic cell'
  external: FeatureSet(id='wQm9nPrDMw4Otrs9kBnF', n=2, registry='core.Feature', hash='ZnmZTzEDV7ZlAR1rr-qw', updated_at=2023-09-23 14:26:15, modality_id='iaVlbrVX', created_by_id='DzTjkKse')
    ๐Ÿ”— assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
    ๐Ÿ”— species (1, bionty.Species): 'human'
Labels:
  ๐Ÿท๏ธ species (1, bionty.Species): 'human'
  ๐Ÿท๏ธ cell_types (9, bionty.CellType): 'CD16-positive, CD56-dim natural killer cell, human', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'Cd4-negative, CD8_alpha-negative, CD11b-positive dendritic cell', 'B cell, CD19-positive', 'CD8-positive, alpha-beta memory T cell', 'central memory CD8-positive, alpha-beta T cell', 'monocyte', 'mature T cell', 'dendritic cell'
  ๐Ÿท๏ธ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
file2.view_flow()
https://d33wubrfki0l68.cloudfront.net/51b35327d16660a71ccc24215cfa4d095908c4c6/bcae3/_images/29c757d78532d1ed767d9d17eb5679aa9dfd398f4a46ff6963c7fdfb63ea411a.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
749
shared_genes.list("symbol")[:10]
['CD300A',
 'BCAS4',
 'CD8A',
 'SLC25A39',
 'HLA-DQA1',
 'MACROH2A1',
 'RPL39',
 'APMAP',
 'PLP2',
 'FPR1']

Compare cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human',
 'CD8-positive, alpha-beta memory T cell']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subsetted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs ร— n_vars = 244 ร— 749
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file                 
CD8-positive, alpha-beta memory T cell              Conde22                  120
CD16-positive, CD56-dim natural killer cell, human  Conde22                  114
CD8-positive, alpha-beta memory T cell              10x reference pbmc68k      7
CD16-positive, CD56-dim natural killer cell, human  10x reference pbmc68k      3
dtype: int64
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
Hide code cell output
๐Ÿ’ก deleting instance testuser1/test-scrna
โœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
โœ…     instance cache deleted
โœ…     deleted '.lndb' sqlite file
โ—     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna