Query & analyze#
import lamindb as ln
import lnschema_bionty as lb
lb.settings.species = "human"
💡 loaded instance: testuser1/test-flow (lamindb 0.54.1)
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2 scanpy==1.9.5
💡 Transform(id='wukchS8V976Uz8', name='Query & analyze', short_name='facs2', version='0', type=notebook, updated_at=2023-09-23 14:27:31, created_by_id='DzTjkKse')
💡 Run(id='2hiayo9fxzIjEubMXz6x', run_at=2023-09-23 14:27:31, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')
Inspect the CellMarker registry #
Inspect your aggregated cell marker registry as a DataFrame
:
lb.CellMarker.filter().df().head()
name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
L0m6f7FPiDeg | CD86 | CD86 | 942 | A8K632 | uHJU | pdgG | 2023-09-23 14:27:11 | DzTjkKse | |
c3dZKHFOdllB | CD33 | CD33 | 945 | P20138 | uHJU | pdgG | 2023-09-23 14:27:11 | DzTjkKse | |
ljp5UfCF9HCi | TCRgd | TCRGAMMADELTA|TCRγδ | None | None | None | uHJU | pdgG | 2023-09-23 14:27:11 | DzTjkKse |
a624IeIqbchl | CD45RA | None | None | None | uHJU | pdgG | 2023-09-23 14:27:11 | DzTjkKse | |
cFJEI6e6wml3 | CD20 | MS4A1 | 931 | A0A024R507 | uHJU | pdgG | 2023-09-23 14:27:11 | DzTjkKse |
Search for a marker (synonyms aware):
lb.CellMarker.search("PD-1").head(2)
id | synonyms | __ratio__ | |
---|---|---|---|
name | |||
PD1 | 2VeZenLi2dj5 | PID1|PD-1|PD 1 | 100.0 |
CD16 | bspnQ0igku6c | 50.0 |
Look up markers with auto-complete:
markers = lb.CellMarker.lookup()
markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-09-23 14:27:11, species_id='uHJU', bionty_source_id='pdgG', created_by_id='DzTjkKse')
Query files by markers #
Query panels and datasets based on markers, e.g., which datasets have 'CD14'
in the flow panel:
panels_with_cd14 = ln.FeatureSet.filter(cell_markers=markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
FBt7GSAUhCXpYDofIonW | h7SGIP1y | None | .h5ad | AnnData | Alpert19 | None | 33369696 | fnzTGHE8BlkiMMIqHLDjyA | md5 | OWuTtS4SAponz8 | xaBM4IhwfAi1KOLU6kut | None | 2023-09-23 14:27:17 | DzTjkKse |
eYuY9b9V1wXlA5stBxrh | h7SGIP1y | None | .h5ad | AnnData | Flow cytometry file 2 | None | 6837528 | aWYCHE1-26gzAU6rlgoMtQ | md5 | SmQmhrhigFPLz8 | zD0n79CMqgtJa45Yx1NH | None | 2023-09-23 14:27:26 | DzTjkKse |
Access registries:
features = ln.Feature.lookup()
efs = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
Find shared cell markers between two files:
files = ln.File.filter(feature_sets__in=panels_with_cd14, species=species.human).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['Cd14', 'CD8', 'Cd19', 'CD57', 'CD3', 'CD127', 'Cd4', 'CD28', 'CD27', 'Ccr7']
Concatenate & analyze queried files #
Load files into memory and concatenate:
adata1 = file1.load()
adata2 = file2.load()
import anndata as ad
adata = ad.concat(
[adata1, adata2],
label="file",
keys=[file1.description, file2.description],
)
adata
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1838: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.
utils.warn_names_duplicates("obs")
AnnData object with n_obs × n_vars = 231130 × 10
obs: 'file'
import scanpy as sc
sc.pp.pca(adata)
sc.pl.pca(adata, color=markers.cd14.name)
Register a concatenated dataset #
If we believe that we’ll need this dataset, again, we can register a concatenated version:
dataset = ln.Dataset(adata, name="Concatenated dataset")
dataset.save()
dataset.view_flow()
# clean up test instance
!lamin delete --force test-flow
!rm -r test-flow
💡 deleting instance testuser1/test-flow
✅ deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-flow.env
✅ instance cache deleted
✅ deleted '.lndb' sqlite file
❗ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-flow