Ingest a second file#
import lamindb as ln
import lnschema_bionty as lb
import readfcs
lb.settings.species = "human"
💡 loaded instance: testuser1/test-flow (lamindb 0.54.1)
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.54.1 lnschema_bionty==0.31.2 pytometry==0.1.4 readfcs==1.1.6 scanpy==1.9.5
💡 Transform(id='SmQmhrhigFPLz8', name='Ingest a second file', short_name='facs1', version='0', type=notebook, updated_at=2023-09-23 14:27:21, created_by_id='DzTjkKse')
💡 Run(id='zD0n79CMqgtJa45Yx1NH', run_at=2023-09-23 14:27:21, transform_id='SmQmhrhigFPLz8', created_by_id='DzTjkKse')
Let us validate and register another .fcs
file:
Access #
filepath = ln.dev.datasets.file_fcs()
adata = readfcs.read(filepath)
adata
AnnData object with n_obs × n_vars = 65016 × 16
var: 'n', 'channel', 'marker', '$PnB', '$PnR', '$PnG'
uns: 'meta'
Transform: normalize #
import anndata as ad
import pytometry as pm
pm.pp.split_signal(adata, var_key="channel")
pm.tl.normalize_arcsinh(adata, cofactor=150)
adata = adata[ # subset to rows that do not have nan values
adata.to_df().isna().sum(axis=1) == 0
]
adata.to_df().describe()
KI67 | CD3 | CD28 | CD45RO | CD8 | CD4 | CD57 | CD14 | CCR5 | CD19 | CD27 | CCR7 | CD127 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 | 64593.000000 |
mean | -7.784467 | -7.958064 | -7.880424 | -7.849991 | -7.682381 | -7.695841 | -7.772347 | -7.827088 | -7.427381 | -7.693235 | -8.009255 | -7.514956 | -7.471545 |
std | 30.911205 | 30.796326 | 30.847746 | 30.776819 | 30.846949 | 30.873545 | 30.907915 | 30.640249 | 30.767073 | 30.675623 | 30.902098 | 30.668348 | 30.830299 |
min | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 | -62.628761 |
25% | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 | -0.009892 |
50% | -0.000321 | -0.000322 | -0.000322 | -0.000322 | -0.000321 | -0.000322 | -0.000321 | -0.000322 | -0.000321 | -0.000322 | -0.000322 | -0.000321 | -0.000321 |
75% | 1.086298 | 1.045244 | 0.819897 | 1.050630 | 1.104099 | 0.987080 | 0.995414 | 1.041992 | 1.145463 | 0.932001 | 1.096484 | 1.150226 | 1.248759 |
max | 84.386696 | 84.386627 | 84.385368 | 84.398567 | 84.405098 | 84.398537 | 84.402496 | 84.398567 | 84.337654 | 84.382713 | 84.402489 | 84.362930 | 84.374611 |
Validate cell markers #
Let’s see how many markers validate:
validated = lb.CellMarker.validate(adata.var.index)
❗ 7 terms (53.80%) are not validated for name: KI67, CD45RO, CD4, CD14, CCR5, CD19, CCR7
Let’s standardize and re-validate:
adata.var.index = lb.CellMarker.standardize(adata.var.index)
validated = lb.CellMarker.validate(adata.var.index)
❗ found 1 synonym in Bionty: ['KI67']
please add corresponding CellMarker records via `.from_values(['Ki67'])`
❗ 3 terms (23.10%) are not validated for name: Ki67, CD45RO, CCR5
Next, register non-validated markers from Bionty:
records = lb.CellMarker.from_values(adata.var.index[~validated])
ln.save(records)
Now they pass validation:
validated = lb.CellMarker.validate(adata.var.index)
assert all(validated)
Register #
modalities = ln.Modality.lookup()
features = ln.Feature.lookup()
efs = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
markers = lb.CellMarker.lookup()
file = ln.File.from_anndata(
adata,
description="Flow cytometry file 2",
field=lb.CellMarker.name,
modality=modalities.protein,
)
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1230: ImplicitModificationWarning: Trying to modify attribute `.var` of view, initializing view as actual.
df[key] = c
... storing '$PnR' as categorical
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1230: ImplicitModificationWarning: Trying to modify attribute `.var` of view, initializing view as actual.
df[key] = c
... storing '$PnG' as categorical
❗ 3 terms (100.00%) are not validated for name: FSC-A, FSC-H, SSC-A
❗ no validated features, skip creating feature set
file.save()
file.labels.add(efs.fluorescence_activated_cell_sorting, features.assay)
file.labels.add(species.human, features.species)
file.features
Features:
var: FeatureSet(id='qXUXpOspjIFUrCkvrwMZ', n=13, type='number', registry='bionty.CellMarker', hash='cInZdHy3fspNNLGysq01', updated_at=2023-09-23 14:27:26, modality_id='Vx6LQKum', created_by_id='DzTjkKse')
'CD45RO', 'CD3', 'Cd14', 'CCR5', 'CD127', 'CD28', 'CD57', 'CD27', 'Ccr7', 'Cd19', ...
external: FeatureSet(id='fz4nKTblqMuXbNYOSyuc', n=2, registry='core.Feature', hash='56DmDcmbv0Qwt6E6RoXs', updated_at=2023-09-23 14:27:26, modality_id='e15pjKn9', created_by_id='DzTjkKse')
🔗 species (1, bionty.Species): 'human'
🔗 assay (1, bionty.ExperimentalFactor): 'fluorescence-activated cell sorting'
View data flow:
file.view_flow()
Inspect a PCA fo QC - this dataset looks much like noise:
import scanpy as sc
sc.pp.pca(adata)
sc.pl.pca(adata, color=markers.cd14.name)